UC San Diego engineer receives award to advance concentrated solar power research

UC San Diego engineer receives award to advance concentrated solar power research

Renkun Chen, a professor of mechanical and aerospace engineering at the University of California San Diego, has received a $1.18 million dollar award from the U.S. Department of Energy Solar Energy Technologies Office to develop technology that can advance next-generation concentrating solar power (CSP) systems.

The project is aimed at developing a diagnostic tool that can rapidly measure and monitor heat transfer in CSP plant materials such as the tubing and the heat transfer fluids and solid particles flowing through the tubing materials. This tool could provide a convenient and inexpensive way to evaluate the performance of CSP plant materials, as well as do continuous, real-time monitoring to assess the health of these materials over decades of use.

“There’s a series of complex heat transfer processes happening across different materials, from the outer solar absorber coating, to the pipes and to the heat transfer fluids or particles. To develop a CSP plant, you need to have a good understanding of the thermophysical properties of these materials—for example, how fast they conduct heat and how well they store heat,” said Chen. “However, these properties aren’t well understood at high operating temperatures, which will exceed 700 C in next-generation CSP technologies that the Energy Department is envisioning. Our proposed characterization tool will contribute to this effort.”

Renkun Chen Credit: UC San Diego Jacobs School of Engineering

The tool that Chen and his team are developing is essentially an ultra-sensitive infrared camera that can remotely measure the thermophysical properties of CSP plant materials at temperatures above 700 C. The camera would be sensitive enough to measure temperature changes much smaller than a degree Celsius. “This would not be your typical infrared camera,” said Chen. “Existing off-the-shelf ones can’t measure temperature changes smaller than a few degrees Celsius.”

Currently, the methods to measure high-temperature thermophysical properties of CSP plant materials are costly and labor-intensive. As next-generation CSP systems are pushing for higher temperature with emerging materials, such as molten salts and solid particles, rapid and accurate measurements of their thermophysical properties are becoming more imperative, explained Chen. Additionally, current on-site monitoring of heat transfer processes in CSP plants requires implanting temperature sensors at different spots inside the materials. And these sensors would need to withstand the extreme conditions inside, noted Chen.

In this project, Chen is leading efforts to develop a non-contact tool that can be applied remotely for in situ diagnostics in CSP plants and can provide rapid measurements in the laboratory. This tool would be inexpensive and convenient to use compared to existing diagnostic methods for CSP plant materials.

Provided by University of California – San Diego

2018-06-13T06:11:38+00:0013-06-2018|Categories: BREAKING NEWS, NEWS, Sin categoría, Storage, Top News|Tags: , , |